

Quantstamp: The protocol for

securing smart contracts

Quantstamp is the first smart contract security-auditing

protocol. We are extending Ethereum with technology that

ensures the security of smart contracts. Our team is made of up of

software testing experts who collectively have over 500 Google

Scholar citations.

Founders Founding Team Members

Richard Ma, Cornell ECE

Algorithmic Portfolio Manager

Dr. Vajih Montaghami, PhD

Formal methods

Steven Stewart, MCS, BA

PhD, U. Waterloo

Software verification, Database implementation

Ed Zulkoski, B.S.

PhD-candidate, U. Waterloo

SAT/SMT solvers

Leonardo Passos, PhD

Compilers and Programming Languages

Advisors

Dr. Vijay Ganesh, Assistant Professor, U. Waterloo

(Ex-Stanford, MIT)

Evan Cheng, Director of Engineering at Facebook

ACM Software System Award for LLVM

Dr. Derek Rayside, P. Eng., Associate Professor, U.

Waterloo (Ex-MIT)

2017-October-7 Version 3.0

The Problem 4

Quantstamp Protocol 4

Technology Roadmap 6

Motivation 7

Smart Contract Improvements 7

How we improve smart contract infrastructure 7

How we improve the developer’s process 8

Quantstamp, by example 9

Technology 10

Validation Protocol 11

Design 11

Security Audit Engine 13

Architectural View 14

Quantstamp Validation Smart Contract for Ethereum 14

Quantstamp Network for Ethereum 15

Quantstamp Reports 15

Tradecraft 15

Computer-aided reasoning tools 16

SAT solvers 16

SMT solvers 16

Model-checking 16

Static program analysis 17

Symbolic execution and Concolic Testing 17

Incremental releases and the subscription model 17

Bug Finders 18

Security Disclosure Strategy 18

Distributed and Parallel SAT 19

The Satisfiability Problem (SAT) 19

Parallel SAT Solvers 21

Parallel SAT and consensus 22

Common vulnerabilities for Ethereum/Solidity 22

Financial Planning 26

Research contributions by our team 27

Demo: Locating The Parity Multisig Vulnerability 28

Frequently Asked Questions 30

2

Detailed Bios 32

Addendum A 35

Why we should be concerned about smart contracts 35

The DAO and others 35

Recent studies 36

Addendum B 38

Off-chain Tools for Developers 38

Smart Debugging using discriminating examples 38

Important Legal Disclaimer 42

3

The Problem

Blockchain networks are secure but smart contracts are not. In June 2016, a hacker stole $55M

in Ethereum coins from the DAO due to a bug in its smart contract . In July 2017, another
1

hacker stole over $30M in Ether from crypto companies due to a one word bug in the smart

contract code in the Parity multi-sig wallet . Security issues like these are a serious impediment
2

to wider adoption of the Ethereum network because they erode trust in smart contracts.

Current efforts to validate smart contracts are inadequate. Engaging security consulting

companies require human experts to audit smart contracts. This process is expensive and

error-prone. Also, relying on a single company requires trusting that no bad actors exist in the

company. A distributed system relying on consensus among many different actors is far more

secure.

Security audit processes that rely on human experts cannot keep up with the exploding growth

rate of smart contract adoption. Between June 2017 and October 2017, the number of smart

contracts grew from 500K to 2M . Within a year, we expect there to be 10M smart contracts.
3 4

This will create an exponential increase in the demand for auditing. There aren’t enough security

experts in the world to audit all smart contracts today, and this shortage will be even more acute

in the future.

The potential costs of smart contract failures will also grow. As of October 2017, about $3.2B

(11M ETH) was locked in smart contracts. The number of dollars locked in smart contracts will

grow exponentially as Ethereum network and smart contract adoption grows. The potential cost

of smart contract vulnerabilities will grow commensurately.

Quantstamp Protocol

The Quantstamp protocol solves the smart contract security problem by creating a scalable and

cost-effective system to audit all smart contracts on the Ethereum network. Over time, we expect

every Ethereum smart contract to use the Quantstamp protocol to perform a security audit

because security is essential.

The protocol consists of two parts:

● An automated and upgradeable software verification system that checks Solidity

programs. The conflict-driven distributed SAT solver requires a large amount of

1 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
2 https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
3 https://web.archive.org/web/20170602184510/https://etherscan.io/accounts/c
4 https://etherscan.io/accounts/c

4

computing power, but will be able to catch increasingly sophisticated attacks over time.

● An automated bounty payout system that rewards human participants for finding errors

in smart contracts. The purpose of this system is to bridge the gap while moving towards

the goal of full automation.

The Quantstamp protocol relies on a distributed network of participants to mitigate the effects

of bad actors, provide the required computing power and provide governance. Each participant

uses Quantstamp Protocol (QSP) tokens to pay for, receive, or improve upon verification

services. Below are the different types of participants.

● Contributors receive QSP tokens as an invoice for contributing software for verifying

Solidity programs. All contributed code will be open source so that the community can

have confidence in its efficacy. Most Contributors will be security experts. Contributions

are voted in via the governance mechanism.

● Validators receive QSP tokens for running the Quantstamp validation node, a

specialized node in the Ethereum network. Verifiers only need to contribute computing

resources and do not need security expertise.

● Bug Finders receive QSP tokens as a bounty for submitting bugs which break smart

contracts.

● Contract Creators pay QSP tokens to get their smart contract verified. As the number

of smart contracts grows exponentially, we expect demand from Contract Creators to

grow commensurately.

● Contract Users will have access to results of the smart contract security audits.

● Voters: The governance system is a core feature of the protocol. The validation smart

contract is designed to be modular and upgradeable based on token holder voting

(time-locked multi-sig). This governance mechanism reduces the chance of upgrade

forks and decentralizes influence of the founding team over time.

5

Technology Roadmap

2017

June ● Quantstamp founded by Richard and Steven

July ● Solidity Static Analyzer prototype built days after Parity Wallet hack

August ● Released first version of whitepaper

September ● Hired Ed, Krishna, Vajih, Leo

October ● Completed Request Network semi-automated audit

● Built automated truffle test generator

● Complete 2nd semi-automated audit with another company

November ● Complete 3rd semi-automated audit with another company

● QSP token launch

● Begin university partnerships with the University of Waterloo

December ● Build the Quantstamp validation/payment smart contract on Ethereum

● Complete the 4th semi-automated audit

2018

January ● Build the Quantstamp validation node (an augmented Ethereum node)

February ● Add analysis software v1 to the validation node that returns the proof-of-audit

hash and raw output

● Complete the 5th semi-automated audit using analysis software v1

March ● Begin testing phase and improvement of crypto-economic incentives

● Implement token holder governance system for the upgradeable protocol

April ● Deploy to test network after testing and validating system

● Begin academic review of the system

May ● Hold first Quantstamp hackathon

June ● Begin work on smart contract insurance with partners

July ● Hold token holder vote for mainnet after months of testing/incentive

adjustment

August ● Release mainnet v1

September ● Begin work on distributed SAT consensus with BFT for Mainnet v2

October ● Add smart contract insurance alpha product on Mainnet smart contracts

6

https://request.network/

Motivation

Our team has devoted their careers to helping developers produce more reliable code,

representing years of combined research and experience in the discipline of software

verification. The opportunity to apply these expertise towards the next generation of the digital

revolution is extremely exciting for everyone involved. There is a clear and urgent need for more

secure code.

Vulnerabilities in smart contracts threaten the adoption of blockchain technology and

cryptocurrencies. Currently a lot of work is being done to scale Ethereum, however we think

security is equally important. Without security of smart contracts, it’s hard for people to trust

them with anything other than risk capital. Our vision for the future is that smart contracts will

be mainstream applications used by people to make their everyday lives easier. We will help

bring about this vision for smart contracts by extending Ethereum with technology that ensures

the security of smart contracts.

We believe that automated security audits will help developers to deploy code that the public can

trust without having to write formal specifications that contain more lines of code than the

program itself. Our aim is to automate checks and property verification as much as possible.

Each of these objectives should contribute to a healthier blockchain ecosystem. This solution

addresses a infrastructural-level problem.

Our strategy is to create a foundational protocol that could be eventually incorporated directly

into the Ethereum platform and to create a safe environment needed for the first Ethereum

killer app.

The remainder of this document details why a security protocol is a necessary technological

advancement, and provides a high-level architecture of the platform.

Smart Contract Improvements

How we improve smart contract infrastructure

The protocol allows automated security checks on the smart contract code, and does so in a

trustless manner. Our approach offers the following two core advantages.
5

5 We use the word “trustless” to indicate that the process is transparent and it is not necessary to trust a
third-party, and deters bad actors from compromising the audit.

7

1. The protocol allows end-users to directly submit programs for verification,

without the possibility of a bad actor manipulating the results of an audit

Imagine a bad actor at a security auditing company that allows a multi-million dollar bug to slip

through, and then takes advantage of the live deployed contract. The consensus required by the

Quantstamp protocol mitigates the effects of bad actors based on the economically dominant

strategy - it would be too costly to try to manipulate the results. Verified smart contracts are

produced with the proof-of-audit hash, which includes the version of the security library used by

the verifier and a plain-text report is released based on consensus. In the future, we plan to offer

smart contract insurance in partnership with 3rd parties to further mitigate risks of using smart

contracts.

2. We incentivize miners by making the verification and certification of smart

contracts part of the validation node software on Ethereum

In a blockchain architecture, “miners” are participating entities that try to add transactions to

the chain. In the Quantstamp protocol, miners are called verifiers. A verifier needs to run the

validation node software which watches for updates on the Quantstamp validation smart

contract. The fee for performing the service makes verifiers honest. A verifier that certifies a

contract produces a proof-of-audit hash and in turn, the verifier is awarded a token fee. In case a

verifier finds a violation of security goals by a contract, s/he produces a counterexample that is a

witness to the violation and the escrow smart contract pays a bounty fee to the verifier.

Developers are responsible to address vulnerabilities when they are found, but now, they can

address it before real stakes are involved.

How we improve the developer’s process

Well-intentioned software developers need help to produce better code. As pointed out by Luu et

al. , there is a semantic gap rooted in a misunderstanding of how code executes in the
6

blockchain; consequently, there is a pressing need for better tools that can assist the developer

in capturing vulnerabilities prior to deployment. The current way developers test code -

manually via open source code reviews and unit tests (if they are diligent) - is not sufficient to

meet the needs of blockchain technology, which ideally offers perfect security. All of the above

methods are very manual methods that allow for human error. There is a need for an easy

process of verifying smart contracts while minimizing the chance of serious vulnerabilities

slipping through the cracks. The Quantstamp protocol provides this easy interface while also

helping to protect developer reputations by proving on the blockchain that they have performed

this auditing.

6 Luu et al. describe this semantic gap in their paper “Making Smart Contracts Smarter.” They propose to
enhance the operational semantics of Ethereum and offer a symbolic execution tool called Oyente to find
bugs in smart contracts. We pragmatically believe that very few developers, in practice, will ever utilize
such tools, just as very few do in the ordinary practice of software engineering.

8

Quantstamp, by example

Suppose a developer plans to deploy a smart contract written in Solidity on Ethereum. There is

substantial risk when writing code that accesses a monetary system, and the developer must be

careful to ensure that no funds are lost due to vulnerabilities.

To minimize risk, the developer submits his code for a security audit via the Quantstamp

Ethereum smart contract directly from his wallet, with the source code in the data field, and by

sending QSP tokens. Depending on the security needs of the program, the developer can decide

how much bounty to send. Then, the smart contract receives the request, and on the next

Ethereum block validation nodes perform a set of security checks to validate the smart contract.

Upon consensus, the proof-of-audit and the report data are added to the next Ethereum block

along with the appropriate token payout. The report classifies issues based on a severity system

from 1–10; a 1 is a minor warning, a 10 is a major vulnerability. From that point on, if a serious

vulnerability is not immediately detected, the bounty remains until the specified time has

elapsed. At the end of the time period, the bounty is returned to the developer who requested the

audit.

9

When requesting an audit, the developer chooses a public or private security report. Private

reports are encrypted using the public key of the smart contract and can be decrypted by the

owner/developer. The developer and the public can access a web portal called qsscan.io to

review any security report. The portal parses the information in the data field of the transactions

via the Quantstamp smart contract, and displays it. By using the proof-of-audit hash, security

reports viewed by the public exactly match the audited source code to prevent manipulation of

report results.

A developer can perform security audits on a local machine prior to issuing a public audit, but

may find that the computational overhead is too high. Quantstamp validator nodes are likely to

have greater computational capacity in terms of memory and processing cores than the average

developer’s machine. In the same way, by aggregating the power of human hackers with a large

bounty, the project is able to greatly surpass the coverage of a standard code review. Once the

code is ready for deployment, the developer is ultimately motivated to produce a public security

report in order to give users the reassurance that a decentralized security audit was performed.

When a security report identifies issues found within a smart contract, the developer can

publicly annotate qsscan.io with feedback. This gives developers the power to flag false-positives

in the report, and the community can validate the annotations.

Quantstamp does not guarantee flawless source code, but provides a much higher degree of

assurance that the code is secure by using both automated and crowdsourcing methods. The

Quantstamp team commits to continuously engage in research and development, making

regular improvements to the security library. When there are new releases, developers can

re-audit their smart contracts, demonstrating their commitment to securing code and increasing

public confidence.

Non-developers will have more confidence in projects because they can see whether smart

contract developers have audited their code, as well as which version was audited.

Technology

The technology that performs security audits is based on cutting-edge research into verification

algorithms and blockchain technology. The foundation is the Validator Node being developed
7

by Quantstamp, a heavily modified Ethereum node containing an analytical toolkit that applies

techniques from formal methods .
8

7 Kröning & Strichman offer an algorithmic view of formal methods in Decision Procedures (Springer,
2008)
8 These techniques include: static analysis, concolic testing and symbolic execution, and automated
reasoning tools such as SAT and SMT. Our team has contributed to MapleSAT, an award-winning SAT
solver.

10

Validation Protocol

The validation protocol for security audits rewards participants who provide compute resources

for the purpose of running checks on smart contracts. These checks are run by validator nodes.

The protocol ensures that the certification of smart contracts is part of the “proof-of-audit.”

By introducing an Ethereum intermediary escrow/governance smart contract, the system can

ensure transaction security for computation fees. If the receiving smart contract is not verified

by the validator, the escrow will hold the transaction until the verification is complete. If the

verification fails, the tokens are either automatically returned to the sender or held until the

security violations are fixed.

The Quantstamp nodes are partners of the Ethereum network. Ethereum handles the network

and transaction protocols, whereas the Quantstamp nodes handles the validation protocol for

security audits and adds it to the data fields of transactions.

Design

The validation protocol handles both the distribution of computation and consensus. This

protocol specifies how nodes in the network perform automated software verification and the

bug bounty reward mechanism.

The core value proposition of our protocol is that it is trustless and deters bad actors from

manipulating audit results. It is also upgradeable via decentralized governance through QSP

tokens. This is how we design the protocol to achieve these goals.

Protocol Governance

We plan for the Quantstamp protocol to be an upgradeable protocol with a governance system

controlled by the QSP token holders. The governance system controls the update of the

validation smart contract and validation node. The validation smart contract is designed to be

modular and upgradeable. The governance system itself will be added to the smart contract after

the core features are implemented, as detailed in the development roadmap.

A time-locked multisig is used to govern upgrades. In the proposed approach, an upgrade

transaction can be initiated by any member, and the more approvals the transaction has, the

sooner it can be executed. A member can vote against an upgrade, which will mean that it will

cancel out one of the other approved signatures. An upgrade that has been approved by all

members can be executed after 1 hour. The amount of time required doubles for every 5% of

members who don't vote and quadruples if they vote against.

Governance is a critical feature since validators and contributors will want to upgrade the

protocol. A governance mechanism decreases the chance of upgrade forks, allows the protocol to

11

incorporate contributor updates and ensures consistency among users. The decentralized

governance feature allows the community to participate and decentralizes the influence of the

founding team over time as contributors add to the community.

For example: validators would want to vote to change how workloads are distributed to increase

their earning potential. Users would want to vote to incorporate higher-throughput algorithms

that make the protocol faster.

Crypto-Economic Incentives

To prevent bad actors from manipulating the system, we construct an incentive system with a

strategy of preventing rogue validator nodes from altering the audit results by making it too

expensive to mount an attack. Verifiers are incentivized via a transaction fee in QSP tokens and

handle a part of the computation. The proposed protocol requires a Byzantine fault tolerance of

2/3rds. If a 2/3rds consensus is not reached, tokens are not paid out. We reserve the right to

improve this design during the testing and validation stage. The following sections will explain

the fault tolerance design in more detail.

Adversarial Attack versus Distributed Computation

A single bad actor cannot manipulate the network because the other actors, driven by economic

incentives, prevent the attack. To distribute our computation, each actor receives only a

component of the overall verification problem. For distributed computations, we are currently

considering using a t-masking quorum system, where two quorums intersect in at least 2t+1

servers. This quorum system can handle a faulty system with at least t nodes. Since no single

actor has access to the whole verification process, a bad actor is further deterred via the

distribution of the computational process.

Prisoner’s Dilemma

In game theory, the prisoner’s dilemma is a paradox in which two individuals, acting in their

own self-interest, choose a course of action that does not lead to the ideal outcome. Both choose

to benefit themselves at the expense of the other, and both end up in a worse state than if they

had cooperated.

Hypothetically, a verifier who finds a bug could choose not to take the bounty and to exploit it

for future gains. Our economic incentives, however, drive verifiers to pursue the bounty instead

of attempting to exploit a bug. The verifier that attempts to exploit a bug instead of reporting it

has to assume that no other verifier will discover the same bug, report it, and have the bug fixed.

Since the number of un- coordinated verifiers is large, it is very likely that some other verifier

will find the bug and go for the bounty. Thus, a verifier who pursues actions based on

self-interest is driven to claim the bounty, by design.

12

Security Audit Engine

The Security Audit Engine takes an unverified smart contract as input, performs the

automated security and vulnerability checks, and produces a report. Verification results will be

combined with a proof-of-audit hash with a version code used to track the scope of checks from

that version of the security library.

The time taken to run the full tests in the security library scales with the complexity of the smart

contract code; therefore, verification rewards are proportional to computation time. Verifiers

require incentivization to motivate participation in this effort, and a token is issued for users to

access its features.

The increased confidence the public gains when knowing that a smart contract was verified

transparently by consensus will motivate developers to use these features. Overall confidence

will be buoyed by the efforts of bounty hunters who attempt to find critical flaws.

Furthermore, as new vulnerabilities are discovered, the security library will evolve and new

versions will be released. Users will be then be motivated to re-verify their smart contracts using

the latest version of the security library, ensuring that their code is not open to attack due to

newly discovered vulnerabilities. This is similar to how users of software can download patches

to fix security vulnerabilities, or how users can update their antivirus application.

13

Architectural View

The Quantstamp protocol (QSP) is a scalable system to audit all smart contract projects on

Ethereum. Our vision for the Quantstamp security protocol is that it will become part of the

Ethereum protocol.

The QSP is split into three conceptual categories:

1. Quantstamp Validator Smart Contract for Ethereum

2. Quantstamp Network (QN) composed of heavily-modified Ethereum nodes

3. Quantstamp Reports (data carried by the smart contract transactions)

The QN is a network of verifier nodes that generates security reports by consensus. As a utility,

the QSP is platform-agnostic - there can be many variations of the security library, one of

which includes Solidity (for Ethereum), and variants that may cover other smart contract

languages for different platforms.

Quantstamp Validation Smart Contract for Ethereum

The following list of functions are accessible to the end-user.

register()

Users can register an Ethereum address, which alerts the Quantstamp Network to monitor API

calls of the registered address.

audit()

14

A user can submit source code for a security audit along with a token bounty fee. Upon success,

the smart contract is digitally signed to prove that it passes critical security checks. At this point,

an encrypted security report is made available. The bug bounty remains on the contract to

incentivize bug finders until the specified time limit runs out.

upgrade()

Upgrade an existing smart contract. The new version of the smart contract must pass a security

audit. Existing bounties are rolled forward.

Quantstamp Network for Ethereum

The Quantstamp Network (QN) is a specialized protocol capable of monitoring transactions

related to a registered smart contract involving calls to the Quantstamp validation smart

contract.

Quantstamp Reports

Quantstamp Reports provide a public view of the security audits performed by the QN. These

reports will be made visible via a web-based user-interface at qsscan.io.

Reports can be public or private. Public reports are visible to everyone in a human-readable

form. Private reports are encrypted using the public key of the registered user. Only the

registered user can read the contents of the report. Once a smart contract is deployed, the final

security report of the smart contract is public. This allows investors and other users to review

the report before committing their funds.

Smart contract owners are encouraged to annotate the security report. Owners are encouraged

to indicate a response to all issued security warnings and flagged issues. The response may be as

simple as “this is a false positive” or “we are not concerned about this issue,” or may be highly

detailed. The onus is on the owner to provide as much information as possible to anyone who

may want to read the security report in order to increase the level of trust. A “trust score” will be

computed for each smart contract based upon a combination of the findings in the security

report, the size of the bounty, the length of time the bounty has been active and feedback from

the community.

Tradecraft

In real world practice, peer reviewing and unit testing are the major software verification

techniques in use. While peer review is an effective approach, it is still prone to human error,

and manual testing is always limited in coverage and scope. Software verification using

automated reasoning tools can help close the gap. Although research into automated reasoning

tools started several decades ago, their practical importance has progressed rapidly in the last

few years.

15

The Security Audit Engine builds upon a tradecraft of tools and techniques founded upon the

study of discrete mathematics, logic and computer science. It interacts with the security library,

which provides access to security checks (to be performed) and properties (to be verified).

We summarize the tradecraft that supports the Security Audit Engine below.

Computer-aided reasoning tools

Computer-aided reasoning tools, such as SAT/SMT solvers (below), have had a dramatic impact

on software engineering and security in recent years. The key reason for the adoption of solvers

in software engineering is the continuous improvement in their performance and expressive

power.

SAT solvers

SAT (satisfiability) solvers support software verification tools. Computer programs are modeled

as Boolean formulas, which are passed to the solver. When modeling program behaviour and

testing for particular conditions, a Boolean formula can be constructed such that the existence of

a satisfying assignment signifies the presence of a bug. A SAT solver reports “satisfiable” if it can

find a solution or, if none exists, reports “unsatisfiable.”

SAT-solvers are important tools in several areas of software engineering, including software

verification, program analysis, program synthesis and automatic testing. Additional applications

span a variety of problem domains that include electronic design automation, computer-aided

design and others. SAT-solvers are surprisingly efficient, combining decision heuristics,

deductive reasoning and various experimentally validated techniques.

SMT solvers

An SMT solver is a tool that decides satisfiability of formulas in combination of various

first-order theories. It is a generalization of a SAT solver and can handle richer theories than

propositional logic. Common first-order theories, which can model fragments of computer code

for vulnerability analysis, include equality, bit vectors, arrays, rationals, integers, and difference

logic. This is a very active research area, and there are many applications: software verification,

programming languages, test case generation, planning and scheduling, and more. Well known

SMT solvers include Yices (SRI), Z3 (Microsoft), CVC3 (NYU, Iowa), STP (Stanford), MathSAT

(U. Trento, Italy), Barcelogic (Catalonia, Spain).

Model-checking

Model checking is based on abstracting on the behavior of code in an unambiguous manner,

which often leads to the discovery of inconsistencies. This technique explores all possible system

states in a brute-force manner.

16

In contrast to model-checking, bounded model-checking (BMC) is a technique for verifying that

a given property (typically expressed as an assertion by a user) holds for a program in the

number of loop iterations and recursive calls bounded by a given number k, placing a bound on

the size of the execution path for finding a bug. This problem can be reduced to solving the

Boolean satisfiability problem using SAT-solvers.

The utility of bounded model-checking is in part supported by the small-scope hypothesis. This

hypothesis states that most bugs have small counterexamples, and has proven to be an effective

idea for finding bugs in software models. This hypothesis is the basis for so-called lightweight

formal methods.

Static program analysis

Static analysis determines properties of a program without actually executing the program.

Automated tools can assist programmers and developers in carrying out static analysis. Static

analysis has been used to find potential null pointer bugs and to verify that device drivers always

respect API usage requirements.

Symbolic execution and Concolic Testing

Concolic testing is a hybrid software verification technique that performs symbolic execution, a

classical technique that treats program variables as symbolic variables along a concrete

execution path. Symbolic execution is used with an automated theorem prover to generate new

test cases. Its main focus is finding bugs rather than proving correctness.

Incremental releases and the subscription model

Software releases for the Security Library will have critical, major and minor update version

tags. When developers deploy code, they have the ability to flag the contract for re-verification

upon each critical/major/minor release on a subscription payment model. For very financially

sensitive contracts, developers can choose re-verification on all releases. For less sensitive

contracts, they can choose re-verification only on critical releases. When developers flag the

contract for verification, and a subsequent verification fails, they will be notified by the network

and can take immediate action.

The market price of the token transaction fee is an essential component of the platform that will

balance computational resource supply and recurring demand. Because the market price of the

token is free-floating, decentralized verifier nodes are incentivized by market forces to

dynamically bring on additional resources to meet demand.

A developer can choose to not subscribe because they are confident in their application and do

not want to pay subscription fees, but have a critical vulnerability in the code that is only

uncovered at a later date by a new release. There is a possibility that vulnerabilities may be

17

discovered at a later date in contracts that have already been deployed to the network with an

earlier version of the Security Library.

Bug Finders

In open source software, developers are often unrewarded for finding bugs. Recently , Emin Gün
9

Sirer found two critical vulnerabilities in BitGo while on vacation, and wrote a friendly email to

alert them. In a common experience among security developers, he received a thankless reply

and later was actually snubbed by the BitGo CTO. The automated bounty reward payout of QSP

tokens will allow skilled developers to submit bugs to the validator contracts and earn

immediate rewards and public recognition without all the back-and-forth with companies.

Bounties in QSP tokens are submitted when the source code is sent to the Quantstamp validator

smart contract and then held in escrow. Bug finders can use any means at their disposal to break

the code, and if a smart contract is found to have major vulnerabilities, then the verifier is

awarded the bug bounty that was held in escrow. Validator nodes have run validation software

that can verify the submitted bug.

We believe that it will be possible for skilled developers to earn an income purely via bug

finding, by manually searching for security flaws in public smart contracts on our platform.

Financially sensitive contracts worth millions of dollars, should in theory have bouty contracts

worth at least tens of thousands of dollars before being deployed live. This will increase the

security of our platform and also incentivize more security experts to spend time in the

ecosystem and develop their skills.

Security Disclosure Strategy

Attackers might choose to leverage the security library as a tool for finding vulnerabilities in

existing smart contracts. Any detected vulnerabilities could then be used as a starting point for

planning an attack. It is not our intention to facilitate the efforts of attackers, no matter how

unlikely it is that they would succeed.

In theory, this unfortunate scenario could be avoided from the start if all deployed smart

contracts were pre-audited by the QSP without ever providing attackers with access to the

complete security library. For this reason, we will take the following actions:

1. We will implement a staging period during the library release process, during which time

we will generate encrypted security reports that smart contract owners can access.

2. We will publish public statistics indicating the frequency with which critical issues are

present in smart contracts with the hope of motivating smart contract owners to read security

reports and take appropriate actions.

9 http://hackingdistributed.com/2017/07/20/parity-wallet-not-alone/

18

3. To avoid giving clues to would-be attackers, we will ensure that the existence of a report

will not be indicative of the existence of a vulnerability, nor will characteristics of the encrypted

report, such as its size, offer any reliable clues.

Whenever a new version of the security library is released, there may be a window of time in

which previously audited smart contracts have newly detectable vulnerabilities. This again,

could give an attacker the opportunity to use the security library as a starting point for planning

an attack, even if that window of opportunity is relatively small. This is a secondary purpose of

the independent verifier system - by leveraging human intelligence with bounties, we can bridge

the gap between inadequate automated checking and the converse - sophisticated automated

attacks.

Distributed and Parallel SAT

Software verification offers many benefits: better code, better testing, less hacks, and is an

effective way to improve software security. The SAT Solver is an important tool in this effort. In

this section, we offer a cursory discussion of SAT and Parallel SAT.

The Quantstamp Network offers a fascinating and exciting opportunity for the domain of SAT.

Quantstamp is building a new kind of distributed SAT solver where consensus and redundancy

are built-in, and participants are incentivized to solve all varieties of SAT problems in their

quest to claim tokens and certify contracts. The application of this technology to smart contracts

is particularly exciting because there is so much at stake.

The Satisfiability Problem (SAT)

A problem instance of SAT consists of a Boolean formula f in n variables. A SAT-solver

determines the existence or non-existence of a satisfying variable assignment; in other words, an

assignment of either true or false to each variable such that the formula itself is true. Most

solvers require that f be specified in conjunctive normal form (CNF), wherein the formula

consists of a conjunction of clauses, each consisting of a disjunction of literals .
10

The typical SAT-solver engages in the following three step workflow from high-level encoding
11

of the problem through the actual solving procedure.

1. Encoder

a. Encodes the problem as a Boolean formula in conjunctive normal form (CNF)

such that a satisfying assignment indicates a property violation

10 The conversion of an arbitrary Boolean formula to CNF can be carried out in linear time with respect to
the number of formula variables using Tseitin’s translation
11 We draw upon Norbert Manthey’s excellent PhD dissertation, “Towards Next Generation Sequential
and Parallel SAT Solvers” found here:
http://www.cs.sfu.ca/~mitchell/cmpt-827/2015-Fall/Projects/Parallel-Manthey-PhD.pdf

19

b. Usually polynomial time complexity

c. Requires less than 1% of total time

2. Preprocessor

a. Often performs simplification and re-encoding

b. Polynomial time complexity

c. Requires about 20% of the total time

3. Solving procedure

a. Conflict-driven clause learning (CDCL)

b. Variable ordering and other heuristics

c. Exponential time complexity in the size of the input

d. Requires about 80% of the total time

The solving procedure is the most challenging, requiring 80% of the computational effort and

whose time complexity is exponential in the worst case.

Many strategies have been developed for solving SAT formulas, but the most widely adopted and

successful solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

When combined with clause learning and clever implementation tricks, DPLL- SAT has enabled

the practical use of SAT-solvers for a wide-range of applications, reflecting the importance of

SAT as a central problem in computer science.

An overview of DPLL-SAT is depicted below.
12

The Decide module carries out decisions, guided by VSIDS (a variable-ordering heuristic). The

BCP module carries out unit propagation until either no new unit facts can be derived, or a

conflicting (unsat) clause is identified. Such clauses are handed over to Analyze Conflict, which

traces the reason for the clause becoming unsatisfied, and generates a “learnt” clause that is

added to the clause database. Learnt clauses prevent the propagation of assignments that lead to

12 Kröning & Strichman offer an architectural view of SAT in Decision Procedures (Springer, 2008)

20

the conflict. The Backtrack module rewinds the search to an earlier state, undoing the

assignments that lead to the conflict. The formula is said to be UNSAT upon identifying a

top-level conflict clause, or SAT when no new decisions can be made and all clauses are satisfied

by the current set of assignments.

Parallel SAT Solvers

Techniques such as model checking and automated theorem proving, which typically rely on

SAT-solvers, may require anywhere from milliseconds to hours of computing effort on

commodity machines. For some of the hardest problems, solving time can extend to days, weeks,

or longer. Recent advancements in algorithms, heuristics, and parallel solvers are helping.

Solvers who share the workload can outperform those who don’t. Parallel SAT solvers attempt to

use more cores to overcome sequential slowdowns.

A typical parallel SAT-solver use a master-slave (or task farm) approach, splitting the search

space and analyzing the subspaces in parallel in separate processes. A prime example of this

approach is Parallel MiniSAT (PMSAT). PMSAT is a distributed parallel SAT-solver,
13

implemented in C++ using the Message Passing Interface (MPI) for communication between

nodes. PMSAT is novel in the following ways: (1) how it partitions the search space in terms of

variable selection and assumptions generation; (2) how assumptions are pruned; (3) how learnt

clauses are shared; and (4) automatic settings. A master controls the scheduling of the clients

and distributes various tasks between them. More than one partitioning heuristic is available to

the user, and sharing of learnt clauses is allowed. Conflict-learning is used to prune the

outstanding tasks and potentially to stop processes whose search space is irrelevant. Two

choices are available for variable selection: (1) frequent variables, or (2) variables that appear in

bigger clauses.

The task farm approach is used with a master and several workers. A worker receives a set of

assumptions from the master, and returns the result of searching its subtree. The master

partitions the workspace according to a configured mode of operation. When a worker finds

UNSAT, it may send a vector of learnt clauses and/or a vector of conflicts, the latter of which is

used by the master to remove all untested assumptions that will lead to UNSAT. After receiving

UNSAT, the master sends another set of assumptions, possibly with learnt clauses, to the idle

worker. Upon receiving SAT, the master ends execution. The vector of conflicts is sent directly to

the master in the result message, with an array size of 20 (multiple messages can be sent, if

needed). Typically, more assumptions are created than there are available workers, which

accounts for workers that end early so that they can get busy right away.

Another kind of parallel SAT-solver adopts a portfolio approach; i.e., it relies on running

multiple solvers on the same SAT instance in parallel. This technique is the state-of-the-art in

13 Luis Gil, Paulo Flores, and Luis Miguel Silveira. PMSAT: a parallel version of MiniSAT. Journal on
Satisfiability, Boolean Modeling and Computation, 6:71–98, 2008.

21

parallel SAT solvers, which is presently dominated by ManySAT . With ManySAT, it has been
14

found that using different search heuristics, or even different SAT solvers, has lead to large gains

in performance. Performance gains have also been observed by sharing learnt clauses among the

different solver instances.

Aigner et al. discuss a plain parallel portfolio (PPP) solver that synchronizes on termination,
15

but otherwise does not share any information. Their multi-core implementation uses shared

memory, and asks the question: does memory as a shared resource become a bottleneck? If so,

how much slowdown occurs? Performance degradation due to congestion of the memory system

is seen as an upper bound on the expected slowdown for portfolio systems. Portfolio solvers like

ManySAT and Plingeling have an architecture in which the original formula and shared clauses

are copied by each solver, simplifying the design and minimizing synchronization overhead.

Solvers that attempt to parallelize at a more fine-grained level do not scale as well. The

drawback is that neither the formula nor learnt clauses are physically shared and thus n times

more memory is needed, and it might be expected that there would be more memory system

congestion causing slowdown; however, experiments demonstrate that most memory access are

local (satisfied by core-local caches), which keeps the slowdown low even for a large number of

solvers running in parallel.

Parallel SAT and consensus

As noted previously regarding Quantstamp’s validation protocol, the distributed computation is

partitioned into components of the overall verification problem. This an important mechanism

for inhibiting bad actors. Relating this back to SAT in the distributed setting, in search space

partitioning, each partition, or subspace, is solved by a sequential SAT-solver. In the

Quantstamp Network, when possible, disjoint subspaces are mapped to partitions of nodes

called zones. Within each zone, nodes work to find a satisfying assignment within a discrete

subspace. Since the partitions are disjoint, identifying a satisfying assignment in one zone

implies a satisfying assignment for the original formula. The encoding process of step one

ensures that when a formula is satisfiable, then a bug exists in the original system. The final

output of a zone requires 2/3rds consensus of the participating partition, just as a 2/3rds

majority is required for consensus in general.

Common vulnerabilities for Ethereum/Solidity

The blockchain implementation of Nick Szabo’s idea of a smart contract is a computer program
16

whose correct execution is enforced without relying on a trusted authority. The Ethereum

14 Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation, 6:245–262, 2008.
15 Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, and Mathias Preiner. Analysis of portfolio
style parallel SAT solving on current multi-core architectures. In Proceeding of the Fourth International
Workshop on Pragmatics of SAT (POS13). Citeseer, 2013.
16 Formalizing and Securing Relationships on Public Networks:
http://firstmonday.org/ojs/index.php/fm/article/view/548/469

22

protocol supports stateful contracts, meaning that the values of state variables persist across

multiple invocations. A contract is invoked when it receives transactions from users at its unique

address.

If such transactions are accepted by the blockchain, all participants of the mining network

execute the contract code. The network then agrees, by the consensus protocol, on the output

and next state of the contract. Given that Ethereum smart contracts are immutable and the

effects of the transactions cannot be reversed, it is essential to be able to reason effectively about

code prior to deployment.

Atzei et al. describe a taxonomy of vulnerabilities and unexpected behaviours of smart
17

contracts written in Solidity for Ethereum. Although this taxonomy is specific to Ethereum, it is

likely that similar vulnerabilities will exist for other platforms that use contracts in the future.

We summarize this taxonomy below based on their findings.

Call to the unknown Some Solidity primitives have the non-obvious side effect of

invoking the fallback function of the recipient. This can lead to

unexpected behaviour and may be exploitable by an attacker. (We

discuss this in the section on the Parity/Multisig vulnerability.)

Exception disorder The are two different behaviours for how exceptions are handled

that depend on how contracts call each other. For some, side effects

of the whole transaction are reverted; for others, only the side

effects of the invocation of another smart contract are reverted.

These irregularities can affect the security of contracts.

Gasless send When a user sends ether to a contract, it is possible to incur an out

of gas exception.

Type casts The compiler can do some type-checking, but there are

circumstances where types are not checked which can lead to

unexpected behaviour.

Reentrancy The fallback mechanism may allow a non-recursive function to be

re-entered before its termination, which could lead to loops of

invocations that consume all gas. (The “DAO attack” infamously

exploited this vulnerability.)

Keeping secrets Declaring a field as private does not guarantee its secrecy because

17 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart
Contracts SoK. In Proceedings of the 6th International Conference on Principles of Security and Trust -
Volume 10204, Matteo Maffei and Mark Ryan (Eds.), Vol. 10204. Springer-Verlag New York, Inc., New
York, NY, USA, 164-186. DOI: https://doi.org/10.1007/978-3-662-54455-6_8

23

https://doi.org/10.1007/978-3-662-54455-6_8

the blockchain is public and the contents of a transaction are

inspectable. Cryptographic techniques may need to be employed to

protect secrets.

Immutable bugs Deployed contracts cannot be altered, including when they have

bugs, and there is no direct way to patch it. (An exception to this

occurred after the DAO attack when a controversial hard fork of the

blockchain nullified the effects of transactions involved in the

attack.)

Ether lost in transfer Ether sent to orphaned addresses is lost forever, and there is no way

to detect when an address is an orphan.

Stack size limit The call stack is bounded by 1024 frames and a further invocation

triggers an exception. (A hard fork of the Ethereum blockchain in

October 2016 has addressed this vulnerability.)

Unpredictable state The state of a contract upon sending a transaction to the network is

not guaranteed to be the state of the contract when it actually

executes. Additionally, miners are not required to preserve the

order of transactions when grouping them into a block. Attackers

can exploit this “transaction-order dependence” vulnerability.

Generating randomness A malicious miner can craft his block to bias the outcome of

pseudo-random generator number in his favor. For example, this

could be advantageous for lotteries, games, etc.

Time constraints Many applications use time constraints to determine which actions

are permitted in the current state. If a miner holds a stake on a

contract, he could gain an advantage by choosing a suitable

timestamp for a block he is mining.

Below are a sample of checks that would be implemented in the Security Library for Solidity.

Constant functions The compiler does not enforce that a constant method is not

modifying state; instead, this should be enforced.

Contracts that receive

ether directly

Contracts that receive Ether directly need to implement a fallback

function in order to receive Ether, otherwise the function throws an

exception and sends back the Ether. There can be an alert when the

fallback function is not implemented, since there are situations

where the programmer would want to do this.

Fallback function A contract can have exactly one fallback function, and it cannot

spend more than 2300 gas. We can automatically test that the

programmer is spending less than 2300 gas inside that fallback

24

function.

Reentrancy exploit When calling another contract, the called contract can change state

variables of the calling contract via its functions. It's possible to

check that calls to external functions happen after changes to state

variables in the current contract so that it is not vulnerable to a

reentrancy exploit.

https://gist.github.com/chriseth/c4a53f201cd17fc3dd5f8ddea2aa3f

f9

Implicit declaration A variable declared anywhere within a function will be in scope for

the entire function, regardless of where it is declared. It is also

initialized to a default value for the entire scope of the function. It is

possible that poorly written code can access an implicitly declared

variable with a default value. When this happens, our report would

generate an alert.

Transaction owner When checking tx.origin, it gets the original address that kicked off

the transaction. A malicious actor can use an attack wallet to drain

all funds if the smart contract code required tx.origin == owner,

since in this case tx.origin would be the address of the attack wallet.

Gas forwarding There is an extremely dangerous feature called addr.call.value(x)()

that can forward gas to a receiving contract and opens up the ability

to perform more expensive actions. This is a problem that needs to

be explored more in-depth later.

25

https://gist.github.com/chriseth/c4a53f201cd17fc3dd5f8ddea2aa3ff9
https://gist.github.com/chriseth/c4a53f201cd17fc3dd5f8ddea2aa3ff9

Financial Planning

26

Research contributions by our team

The following table comprises a partial selection of software verification projects connected to

our combined research efforts. When necessary, we will adapt these proven techniques towards

achieving our goal of securing smart contracts on the blockchain.

Name Contributors

(alphabetical

order)

Description

Alloy and the Alloy

Analyzer

Vajih Montaghami

Derek Rayside

Steven Stewart

Alloy is a relational logic that enables developers to

model and reason about software abstractions. The

Alloy Analyzer is capable of mechanically

generating examples of a user’s model. It was

originally developed at MIT as part of the Software

Design Group under the guidance of Dr. Daniel

Jackson.

http://alloy.mit.edu/alloy/

Bordeaux Derek Rayside Bordeaux is a technique and extension of Alloy for

producing near-border examples, an important

capability for improving debugging for identifying

partial over-constraint bugs in software models.

https://github.com/drayside/bordeaux

Clafer Ed Zulkoski Clafer is a general-purpose lightweight modeling

language developed at GSD Lab, University of

Waterloo and MODELS group at IT University of

Copenhagen. Lightweight modeling aims at

improving the understanding of the problem

domain in the early stages of software development

and determining the requirements with fewer

defects. Clafer's goal is to make modeling more

accessible to a wider range of users and domains.

http://www.clafer.org/

Margaux Derek Rayside

Vajih Montaghami

Margaux is a tool for pattern-based debugging that

can guide a user to find a bug. The github page

includes an architectural diagram for how a

debugger using discriminating examples can guide

developers towards correcting flaws in logical

reasoning.

https://github.com/vmontagh/margaux

MapleSAT Vijay Ganesh The award-winning Maple series are a family of

27

http://www.clafer.org/
https://github.com/drayside/bordeaux
http://alloy.mit.edu/alloy/
https://github.com/vmontagh/margaux

MapleCOMSPS

MapleGlucose

Ed Zulkoski conflict-driven clause-learning SAT solvers

developed at the University of Waterloo under the

supervision of Dr. Vijay Ganesh.

https://sites.google.com/a/gsd.uwaterloo.ca/mapl

esat/

MathCheck Vijay Ganesh

Ed Zulkoski

A constraint programming system that combines

SAT solvers with computer-algebra systems.

Extended known results on two conjectures related

to hypercubes.

https://sites.google.com/site/uwmathcheck/

Miramichi

Derek Rayside

Steven Stewart

Miramichi is an experimental parallel SAT-solver

that leverages GPUs for performance acceleration.

https://bitbucket.org/sstewart2015/miramichi4j

Moolloy Derek Rayside

Steven Stewart

Moolloy is an extension to a relational logic for

expressing discrete multiobjective optimization

problems, with applications in science, software

engineering, and finance.

https://github.com/TeamAmalgam/moolloy

Petitcodiac Derek Rayside

Steven Stewart

Petitcodiac is an experimental solver for

quantifier-free linear real arithmetic (LRA) that

leverages OpenMP and GPUs. SMT-solvers, such as

Yices and Microsoft’s Z3, typically use a variation of

the simplex procedure also employed by

Petitcodiac.

https://github.com/sstewart2012/peticodiac

STP Vijay Ganesh STP is a constraint solver (or SMT solver) aimed at

solving constraints of bitvectors and arrays. These

types of constraints can be generated by program

analysis tools, theorem provers, automated bug

finders, cryptographic attack tools, intelligent

fuzzers, model checkers, and by many other

applications.

https://github.com/stp/stp

Demo: Locating The Parity Multisig Vulnerability

We provide a demonstration of a generalizable technique for automatically locating

vulnerabilities similar to the Parity Multisig Wallet flaw that lead to a $32.6 million theft.

28

https://bitbucket.org/sstewart2015/miramichi4j
https://github.com/sstewart2012/peticodiac
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
https://sites.google.com/site/uwmathcheck/
https://github.com/TeamAmalgam/moolloy
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
https://github.com/stp/stp

This simple analyzer constructs multiple AST (Abstract Syntax Tree) visitors and uses these to

extract the program variables and call structure of a Solidity contract. The analyser finds any

public method that directly or indirectly exposes a non-public state variable modification, and

alerts the developer. Using call-graphs we can capture a class of vulnerabilities that can be

located as solutions to reachability problems. In this demo, we have two example solidity
18

contracts to show how the analyser identifies a direct and an indirect vulnerability.

Github code for the demo: https://github.com/quantstamp/solidity-analyzer

18 https://en.wikipedia.org/wiki/Reachability

29

https://github.com/quantstamp/solidity-analyzer
https://en.wikipedia.org/wiki/Reachability

Frequently Asked Questions

Q. What is Quantstamp?

Quantstamp is a security verification protocol for smart contracts that improves the security of

Ethereum. The advantages of the security protocol include automation, trust, governance, and

ability to compute hard problems over a distributed network.

Q. What is the Quantstamp team going to deliver?

The Quantstamp team will be developing the following:

1. Quantstamp validation node (a heavily modified Ethereum client)

2. The security library, containing code that performs automated checks

3. Validation smart contracts that handle bounty payment, voting mechanism and

governance

A security library may also be developed to support languages other than Solidity.

Q. Aren’t human security audits and code reviews the state-of-the-art?

Writing correct, bug-free software is very difficult. (Every seasoned developer eventually comes

around to this conclusion.) One member of our team noted, anecdotally, that at a previous

software company, the backlog of bugs was in the hundreds, and the project manager was

constantly juggling a list of 20-30 features and bugs to work on in every 2-week sprint,

struggling to make any significant progress. In spite of an abundance of bugs, customers

expressed satisfaction about the product and mainly only reacted strongly when

“show-stoppers” were uncovered. Unfortunately, once you give programmers access to a

monetary system via smart contracts, just about any bug can be a show-stopper.

To improve software, most developers believe that they merely need to conduct more code

reviews and write more unit tests, but the cost/benefit calculation seldom favours increased

testing. Although reliance on unit testing and code reviews may be acceptable for low-risk

applications, it is not acceptable when writing code for critical systems. Instead, computer chip

manufacturers, airplane and automobile manufacturers, and many others rely on automated

software verification to complement other best-practices. For similar reasons, our approach is to

take advantage of the years of research that have developed these sophisticated techniques.

Q. Can I really trust a computer to find vulnerabilities better than a human can on

his own?

30

While it is true that unit testing and code reviews go a long ways towards improving the quality

of software, it has been shown that techniques based on formal methods are better at finding the

most subtle and critical bugs that evade human inspection. This is true, in large part, because of

the ability of automated reasoning tools to simulate critical execution paths in a manner that

well exceeds the limitations of human cognition.

Another way to look at this is to consider what has transpired in recent years in algorithmic

trading. For years, it was believed that humans were better at trading than computers, until

eventually the computers took over . With a quick online search for “computers have taken over
19

Wall Street,” you’ll find numerous articles on this phenomenon.

Perhaps, not surprisingly, something similar is already underway with automated security

audits: maybe, when we start, we cannot match an experienced human except on the cost/speed

tradeoff, but with each new release the automated solution will be able to catch more and more

security issues in a transparent way until eventually the algorithms will beat humans.

In the meantime, we leverage human intelligence via an automated bounty for bugs that are

found by independent verifiers (white hat hackers).

Q. Why build a security auditing protocol? Instead, why not form a security

consulting company?

Scalability to handle the millions of smart contracts audits on the Ethereum platform once

they have resolved the Ethereum transaction scaling issues via Plasma/Casper/PoS.

Empowering the first Ethereum killer app.

Q. Why not use Why3 or similar tool for formal verification instead?

Existing projects such as Why3 are too inaccessible for the typical smart contract developer to

use. A similar argument can be made about the adoption of alternative programming paradigms,

such as functional programming (OCaml, Haskell, Clojure), where there ends up being a lot of

hype and promise but, upon closer inspection, not a lot of adoption by actual developers, who

still prefer Java, C#, C++, and Python. For all these reasons and more, Quantstamp automates

as much of the security auditing process as possible by embedding it into the Ethereum network

with our client nodes, and relieving the developer from having to learn specialized techniques.

19 The Quants Are Taking Over Wall Street:
https://www.forbes.com/sites/nathanvardi/2016/08/17/the-quants-are-taking-over-wall-street/

31

Detailed Bios

Co-founders

Steven Stewart

University of Waterloo ECE, Software Verification

Steven is a PhD candidate at the University of Waterloo (ECE) where,

under Derek Rayside and Krzysztof Czarnecki, he focuses on improving

the performance of software verification tools and solvers using

distributed computing and GPUs.

Previously, Steven co-founded a San Francisco-based startup called Many

Trees Inc that used GPUs for machine learning and Big Data analytics. In

his spare time, he likes tinkering with in-memory databases accelerated

using GPUs. He spent nearly 5 years as part of Canada’s cryptologic agency

in the Department of National Defense. Dropped out of PhD to work on

Quantstamp.

Richard Ma

Cornell ECE, Algorithmic Portfolio Manager

Algorithmic Portfolio Manager at Bitcoin HFT Fund. Ex-Tower Research

Capital Quant Strategist. Programmed production algorithmic trading

software in C++/Python/R on competitive US, European, and Asian

derivatives exchanges. Wrote tens of thousands unit tests and built

production-grade integration and validation testing software. Due to

Richard's extreme testing and risk-management methodology, his HFT

trading systems had zero notable incidents in nearly a decade of reliably

handling millions of dollars of investor capital.

32

Founding team members

Dr. Vajih Montaghami, PhD

 Formal Methods

Vajih Montaghami received his PhD from the University of Waterloo

for his work on verifying and debugging lightweight formal models.

He focused on declarative software model formal analysis,

programming language static analysis, imperative code

systemization, and software architecture analysis and evaluation.

During his PhD study, he worked at Google and experienced dealing

with large-scale data analysis systems. He worked on automating

end-to-end testing of a machine learning algorithm applied to a

massive data source. More recently, at Amazon, Vajih helped develop

highly scalable systems as a backend software engineer.

Ed Zulkoski,
B.S., Mathematics and Computer Science

Edward Zulkoski is a Ph.D. candidate in the Department of Computer

Science at the University of Waterloo under the supervision of Vijay

Ganesh and Krzysztof Czarnecki. He recently completed an

internship at Microsoft Research under the direction of Dr.

Christopher Wintersteiger. His PhD research is focused on studying

and exploiting the structural properties of SAT and SMT formulas.

His earlier work investigated combinations of SAT solvers with

computer algebra systems, and optimization techniques for

multi-objective product line optimization. Ed was awarded a Ph.D.

Fellowship from IBM Canada’s Centers for Advanced Studies

Research.

Advisors

Dr. Vijay Ganesh,
Assistant Professor, University of Waterloo

Dr. Vijay Ganesh is an assistant professor at the University of

Waterloo. Prior to that, he was a research scientist at MIT, and

completed his PhD in computer science from Stanford University in

2007. Vijay's primary area of research is the theory and practice of

automated reasoning aimed at software engineering, formal methods,

security, and mathematics.

Vijay has won numerous awards, most recently the ACM Test of Time

Award at CCS 2016, the Early Researcher Award in 2016, Outstanding

Paper Award at ACSAC 2016, an IBM Research Faculty Award in 2015,

two Google Research Faculty Awards in 2013 and 2011, and a Ten-Year

Most Influential paper award at DATE 2008. In total, he has won 9

best paper awards/honors.

33

Dr. Derek Rayside,
P. Eng, Associate Professor, University of Waterloo

Derek Rayside is an Associate Professor of Electrical & Computer

Engineering at the University of Waterloo. His primary research areas

are lightweight formal methods and program analysis. He received his

doctorate in Computer Science at MIT.

Derek is an advisor to a Waterloo startup that was recently acquired by

Microsoft.

34

Addendum A

Why we should be concerned about smart contracts

There is increasing evidence that a troubling percentage, perhaps greater than 40 percent, of

Ethereum smart contracts are vulnerable. It would be difficult to conclude that the remaining

smart contracts are safe because they may contain as yet unidentified vulnerabilities. This is not

a knock on Ethereum, as it is reasonable to assume that any platform that enables the execution

of arbitrary code that accesses the monetary system is at serious risk. The onus is clearly on the

developer to “get it right.”

The DAO and others

Code is law. Or so they say.

On June 17, 2016, what is now referred to as The DAO has since become synonymous with

perhaps one of the greatest would-be heists of modern times. To the tune of $55 million, an

Ether thief discovered a bug in a smart contract that allowed repeated ATM-like withdrawals.

There was no eject button, and once a smart contract is deployed, there’s no turning back. To the

attacker’s delight, smart contracts are immutable and publically available for the unscrupulous

to study and exploit.

Date Losses Description

June 17, 2016 $55 million The DAO exploit is perhaps the best-known. A
20

non-recursive function could be re-entered before

termination, leading to loops of invocations that consume all

gas. The unhandled exception meant that repeated

withdrawals were possible in the calling function.

June 20, 2017 $32.6 million A vulnerability in Parity's multisignature wallet was exploited

by hackers . In this case, some Solidity primitives have the
21

non-obvious side effect of invoking the fallback function of

the recipient. This can lead to unexpected behaviour and may

be exploitable by an attacker.

July 31, 2017 $1 million There was an error in the smart contract of the REX token

sale . Specifically, when generating the contract bytes for
22

deployment, a mistake was made defining the constructor

20 https://www.multichain.com/blog/2016/06/smart-contracts-the-dao-implosion/
21 https://www.cnbc.com/2017/07/20/32-million-worth-of-digital-currency-ether-stolen-by-hackers.html
22 https://blog.rexmls.com/the-solution-a2eddbda1a5d

35

parameters. Instead of a quoted string for an address, a

Javascript hex string was used. Although this was not a theft

by an attacker, it was a preventable loss.

Of course, what followed was the (in)famous and controversial Ethereum hard fork, intended to

correct the apparent wrong-doing of the attacker. Perhaps, to the outsider, it’s surprising that

the hard fork would be controversial; after all, who could condone the actions of the world’s

greatest thief? But, therein lies the problem: if, in fact, code is law, then should it not be

respected for how it was written? Although the developer of the smart contract undoubtedly did

not intend to offer an ATM service, the code itself, as written, most certainly did permit this

behaviour. If code is law, then the code and the law permitted the theft and there was no

wrongdoing.

Whatever your thoughts are on the code is law question, in our view one thing is certain: never

assume that a smart contract is safe. So long as code has access to a monetary system, and so

long as human beings want to make money, then no code is ever truly safe. All we can really do

is minimize the risk, and even better is when we can provably eliminate certain types of

vulnerabilities that are well-known to be exploitable and damaging. While it is true that there

does not exist any fully automated solution that can, without a shadow of a doubt, catch all

possible bugs in a computer program, we can confidently state that the risk can be greatly

minimized. In fact, one could argue that any bug worth finding will tend to be found, and those

that are not will tend to not matter.

Still, were there only one incident -- however damaging it was -- then perhaps our worries would

be out of proportion. The occasional theft could be absorbed as a kind of nuisance tax, and not

necessarily perceived as a catastrophe. (Ho hum another theft. It happens.) Unfortunately,

there is no such thing as bug insurance (not yet) and faulty code, when it surfaces, can indeed be

catastrophic. Beyond that, it’s simply impractical for there to be a hard fork whenever there is a

theft.

Of course, finding a bug isn’t easy. Even if the bug could self-identify, it would be difficult for an

automated solution to be absolutely certain without somehow understanding the original

intentions behind the code. Sometimes what looks like a bug is actually a feature! What can we

do?

Our response: learn and keep learning. Identify patterns and classes of vulnerabilities. Use

established techniques and improve them when necessary. Wrap this all up and make it a part of

a security library whose outputs are verified by decentralized consensus. Incentivize

contributors, and harness both the power of white and black hat hackers to assist in the effort.

Reward them when they succeed. Keep developers accountable.

36

Recent studies

The full extent to which security vulnerabilities plague smart contracts is unknown; however,

recent studies make it abundantly clear that there really is a plague. Below, we summarize a

short selection of research papers that characterize some of the most serious vulnerabilities,

some of which highlight just how easy it is for developers to unknowingly make mistakes.

Making Smart Contracts Smarter

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and

Aquinas Hobor. 2016. Making Smart Contracts Smarter. In

Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security (CCS '16). ACM, New

York, NY, USA, 254-269. DOI:

https://doi.org/10.1145/2976749.2978309

Both malicious miners and users can exploit

certain classes of vulnerabilities that the

authors deem to be due to a “semantic gap”

between how the developer thinks code

executes versus how it actually does. In their

study, 8,519 out of 19,366 (44%) Ethereum

smart contracts contained “semantic gap”

vulnerabilities, involving a total balance of

over 6 million ETH .
23

Formal verification of smart contracts: Short

Paper

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Anitha Gollamudi, Georges Gonthier, Nadim

Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas

Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.

2016. Formal Verification of Smart Contracts: Short Paper. In

Proceedings of the 2016 ACM Workshop on Programming

Languages and Analysis for Security (PLAS '16). ACM, New

York, NY, USA, 91-96. DOI:

https://doi.org/10.1145/2993600.2993611

The authors translate Solidity to F* to analyze

EVM bytecode. They perform checks to

capture whether the code undoes side effects

that can persist when a call to send() fails,

and also to detect the reentrancy problem

that plagued The DAO.

The limitations of their tool restrict analysis

to only 46 smart contracts; however, the

authors state that of those only a handful

passed their checks, suggesting that “a

large-scale analysis of published contracts

would likely uncover widespread

vulnerabilities.”

Demystifying Incentives in the Consensus

Computer

Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena.

2015. Demystifying Incentives in the Consensus Computer. In

Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security (CCS '15). ACM, New

York, NY, USA, 706-719. DOI:

https://doi.org/10.1145/2810103.2813659

The authors show that Turing-complete

scripting exposes miners to a new class of

attacks: “Honest miners are vulnerable to

attacks in cryptocurrencies where verifying

transactions per block requires significant

computational resources.” To address this

problem, they propose an incentive structure

to the consensus protocol where cheating

provides no intrinsic advantage.

A survey of attacks on Ethereum smart The authors present a taxonomy of security

23 To be precise, the value of 6,169,802 ETH on 2017-July-23 is about $1.4 billion USD.

37

contracts

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A

Survey of Attacks on Ethereum Smart Contracts. In

Proceedings of the 6th International Conference on Principles

of Security and Trust - Volume 10204, Matteo Maffei and Mark

Ryan (Eds.), Vol. 10204. Springer-Verlag New York, Inc., New

York, NY, USA, 164-186. DOI:

https://doi.org/10.1007/978-3-662-54455-6_8

vulnerabilities observed across the corpus of

Ethereum smart contracts. In general, these

vulnerabilities emerge due to subtleties of

Solidity that are unknown or misunderstood

by developers.

Step by step towards creating a safe smart

contract

D. Delmolino et al. Step by step towards creating a safe smart

contract: Lessons and insights from a cryptocurrency lab.

Cryptology ePrint Archive, Report 2015/460, 2015.

http://eprint.iacr.org/

The authors show how even a very simple

contract for playing Rock, Paper, Scissors can

contain several logical flaws. These are

characterized as Contracts that do not

refund, Lack of cryptography to achieve

fairness, Incentive misalignment.

Safer smart contracts through type-driven

development

J. Pettersson and R. Edström. Safer smart contracts through

type-driven development: Using dependent and polymorphic

types for safer development of smart contracts. Masters

Thesis in Computer Science, Chalmers University of

Technology of Gothenburg, Sweden, 2016.

Three classes of errors are highlighted that

are common in smart contracts: unexpected

states, failure to use cryptography, and full

call stack. The authors propose using

dependent and polymorphic types and a

functional language called Idris to make

smart contract development safer.

While the above papers are only a sample, a noteworthy percentage of smart contracts

reportedly have known vulnerabilities. Our perspective is that it is possible to prevent many of

these by performing automated checks and formally verifying expected properties. While it is

likely that some attackers will focus their efforts on high profile, opportunistic heists of large

magnitude, many others will be content with multiple smaller grabs less likely to garner much

attention. Everybody is at risk.

Addendum B

Off-chain Tools for Developers

In addition to the decentralized security platform, we are interested in developing a set of

off-chain tools aimed at simplifying the development, debugging, and deployment of smart

contracts. This includes the application of recent work by one of our team members into creating

smarter debugging tools.

Smart Debugging using discriminating examples

Software models with mathematical or logical foundations have proven valuable to software

engineering practice by enabling software engineers to focus on essential abstractions, while

38

eliding less important details of their software design. Like any human-created artifact, a model

might have imperfections at certain stages of the design process: it might have internal

inconsistencies, or it might not properly express the engineer’s design intentions.

We introduce the idea of a smart debugger that helps a non-expert developer to find flaws and

vulnerabilities based on the proven localization, understanding, and fix strategy. This work is

explored in depth in the dissertation Debugging Relational Declarative Models with

Discriminating Examples by founding team member Vajih Montaghami and PhD supervisor Dr.

Derek Rayside (University of Waterloo).

The need to debug arises because the expressed meaning differs from the intended meaning, but

the user does not know where or why. Debugging can be a cumbersome and time-consuming

task that persists throughout the software lifecycle. Zeller , in his seminal book on debugging
24

imperative programs, evokes an inspiring image: Some people are true debugging gurus. They

look at the code and point their finger at the screen and tell you: “Did you try X?” You try X

and voila!, the failure is gone. What has the debugging guru done? They have identified,

localized, and corrected the bug , and they have done this by first forming a hypothesis.
25

Recently, tools and techniques have been developed to provide some automated support for this

vision in the context of relational logic models for software abstractions. Two such tools are

called Bordeaux and Margaux (depicted in the architectural diagram below). These tools first

help the user identify and understand the bug by forming a hypothesis about what might be

wrong with the model and computing a discriminating example for the user to accept or reject. If

the user judges that a bug has been identified, then further automated analysis helps localize

24 A. Zeller. Why programs fail: a guide to systematic debugging. Morgan Kaufmann, 2009.
25 A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance, H.
Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck. The state of the art in
end-user software engineering. ACM Computing Surveys, 43(3):21:1–21:44, Apr. 2011., and J. F. Krems.
Expert strategies in debugging: experimental results and a computational model. In Cognition and
Computer Programming, pages 241–254. Ablex Publishing Corp., 1994.

39

which part of the model needs to change, and might provide a high-level conceptual description

of the correction (but the user still needs to make the correction by hand).

Examples, like test-cases for programs, are more valuable if they reveal a discrepancy between

the expressed model and the engineer’s design intentions. We propose the idea of discriminating

examples for this purpose. A discriminating example is synthesized from a combination of the

engineer’s expressed model and a machine-generated hypothesis of the engineer’s true

intentions. A discriminating example either satisfies the model but not the hypothesis, or

satisfies the hypothesis but not the model. It shows the difference between the model and the

hypothesized alternative.

Validating that the model is a true expression of the engineer’s intent is an important and

difficult problem. One of the key challenges is that there is typically no other written artifact to

compare the model to: the engineer’s intention is a mental object. One successful approach to

this challenge has been automated example-generation tools, such as the Alloy Analyzer. These

tools produce examples (satisfying valuations of the model) for the engineer to accept or reject.

These examples, along with the engineer’s judgment of them, serve as crucial written artifacts of

the engineer’s true intentions.

40

Smart debugging can ease the burden on the developer, who often struggles to recognize gaps
26

between what he intends the code to do versus what it really does. A smart debugger enables the

developer, who likely lacks training in formal methods, to apply localization, understanding, and

fixing of bugs.

26 A practical smart debugger can guide the human intellect towards bridging semantic gaps with the use
of discriminating examples to correct flaws in logical reasoning and supply automatic error localization
tools.

41

Important Legal Disclaimer

Quantstamp Technologies Inc. (the “Company” or “Quantstamp”) Tokens (the “Tokens” or

“QSP Tokens”) to be offered at the Quantstamp Token Pre-Sale and the Public Sale

(collectively, the “Token Sale”) are not intended to constitute securities in any jurisdiction.

This document (the “White Paper”) does not constitute a prospectus or offer document of any

sort and is not intended to constitute an offer of securities or a solicitation for investment in

securities in any jurisdiction.

This White Paper does not constitute or form part of any opinion on any advice to sell or any

solicitation of any offer by Quantstamp to purchase any QSP Tokens, nor shall it or any part of

it, nor the fact of its presentation form the basis of, or be relied upon in connection with, any

contract or investment decision.

No person is bound to enter into any contract or binding legal commitment in relation to the

sale and purchase of the QSP Tokens and no cryptocurrency or other form of payment is to be

accepted on the basis of this Whitepaper.

Any agreement between Quantstamp and you as a purchaser in relation to any sale or purchase

of QSP Tokens is to be governed a separate Quantstamp Token Sale Terms and Conditions

document (the “Terms”). In the event of any inconsistencies between the Terms and this

Whitepaper, the former shall prevail.

You are not eligible and you are not to purchase any QSP Tokens in the Quantstamp Token Sale

if you are a citizen, resident (for tax purposes or otherwise) or green card holder of the United

States of America or a citizen of the People’s Republic of China.

No regulatory authority has examined or approved of any of the information set out in this

Whitepaper. No such action has been or will be taken under the laws, regulatory requirements

or rules of any jurisdiction. The publication, distribution or dissemination of this Whitepaper

42

does not imply that the applicable laws, regulatory requirements or rules have been complied

with.

There are risks and uncertainties associated with Quantstamp and its business and operations,

the QSP Tokens and the Quantstamp Token Sale.

This Whitepaper, any part thereof and any copy thereof must not be taken or transmitted to any

country where distribution or dissemination of this Whitepaper is prohibited or restricted.

CLOSED SYSTEM UTILITY

As of the date of publication of this paper, the Tokens have no known potential uses outside of

the Quantstamp ecosystem, and are not permitted to be sold or otherwise traded on third-party

exchanges. This paper does not constitute advice nor a recommendation by Quantstamp, its

officers, directors, managers, employees, agents, advisors or consultants, or any other person to

any recipient of this paper on the merits of the participation in the Token Sale. Quantstamp

Tokens should not be acquired for speculative or investment purposes with the expectation of

making a profit or immediate re-sale. No promises of future performance or value are or will be

made with respect to Quantstamp Tokens. Accordingly, no promise of inherent value, no

promise of continuing payments, and no guarantee that Quantstamp Tokens will hold any

particular value is made. Unless prospective participants fully understand and accept the nature

of Quantstamp and the potential risks inherent in Quantstamp Tokens, they should not

participate in the Token Sale.

Quantstamp Tokens are sold as a functional good and all proceeds received by Quantstamp may

be spent freely by Quantstamp absent any conditions, save as set out herein.

DISCLAIMER OF LIABILITY

To the maximum extent permitted by the applicable laws, regulations and rules, Quantstamp

shall not be liable for any indirect, special, incidental, consequential or other losses of any kind,

in tort, contract or otherwise (including but not limited to loss of revenue, income or profits, and

loss of use or data), arising out of or in connection with any acceptance of or reliance on this

Whitepaper or any part thereof by you.

43

NO REPRESENTATIONS AND WARRANTIES

Quantstamp does not make or purport to make, and hereby disclaims, any representation,

warranty or undertaking in any form whatsoever to any entity or person, including any

representation, warranty or undertaking in relation to the truth, accuracy and completeness of

any of the information set out in this Whitepaper.

In particular, no representations or warranties whatsoever are made with respect t0

Quantstamp or the Tokens:

(a) merchantability, suitability or fitness for any particular purpose;

(b) that the contents of this document are accurate and free from any error(s);

(c) that such contents do not infringe any third party rights. Quantstamp shall have no liability

for damages of any kind arising out of the use, reference to, or reliance on the contents of this

document, even if advised of the possibility of such damages;

This Whitepaper references third party data and industry publications. Quantstamp believes

that these references are accurate; however, Quantstamp does not provide any assurances as to

the accuracy or completeness of this data. We have not independently verified the data sourced

from third party sources in this paper, or ascertained the underlying assumptions relied upon by

such sources.

REPRESENTATIONS AND WARRANTIES BY YOU

By accessing and/or accepting possession of any information in this Whitepaper or such part

thereof, you represent and warrant to Quantstamp as follows:

(a) you acknowledge that the QSP Tokens do not constitute securities in any form

in any jurisdiction;

44

(b) you acknowledge that this White Paper does not constitute a prospectus or offer document of

any sort and is not intended to constitute an offer of securities in any jurisdiction or a

solicitation for investment in securities and you are not bound to enter into any contract or

binding legal commitment and no cryptocurrency or other form of payment is to be accepted on

the basis of this Whitepaper;

(c) you acknowledge that no regulatory authority has examined or approved of the information

set out in this Whitepaper, no action has been or will be taken under the laws, regulatory

requirements or rules of any jurisdiction and the publication, distribution or dissemination of

this Whitepaper to you does not imply that the applicable laws, regulatory requirements or rules

have been complied with;

(d) you agree and acknowledge that this Whitepaper, the undertaking and/or the completion of

the Quantstamp Token Sale, or future trading of the QSP Tokens on any cryptocurrency

exchange, shall not be construed, interpreted or deemed by you as an indication of the merits of

Quantstamp, the QSP Tokens and the Quantstamp Token Sale;

(e) the distribution or dissemination of this Whitepaper, any part thereof or any copy thereof, or

acceptance of the same by you, is not prohibited or restricted by the applicable laws, regulations

or rules in your jurisdiction, and where any restrictions in relation to possession are applicable,

you have observed and complied with all such restrictions at your own expense and without

liability to Quantstamp;

(f) you agree and acknowledge that in the event that you wish to purchase any QSP Tokens, the

QSP Tokens are not to be construed, interpreted, classified or treated as:

(i) any kind of currency other than cryptocurrency;

(ii) debentures, stocks or shares issued by any person or entity;

(iii) rights, options or derivatives in respect of such debentures, stocks or shares;

(iv) rights under a contract for differences or under any other contract the purpose or pretended

purpose of which is to secure a profit or avoid a loss;

45

(v) units in a collective investment scheme;

(vi) units in a business trust;

(vii) derivatives of units in a business trust; or

(viii) any other security or class of securities.

(g) you are fully aware of and understand that you are not eligible to purchase any QSP Tokens if

you are a citizen, resident (tax or otherwise) or green card holder of the United States of America

or a citizen or resident of the Republic of Singapore;

(h) you have a basic degree of understanding of the operation, functionality, usage, storage,

transmission mechanisms and other material characteristics of cryptocurrencies,

blockchain-based software systems, cryptocurrency wallets or other related token storage

mechanisms, blockchain technology and smart contract technology;

(i) you are fully aware and understand that in the case where you wish to purchase any QSP

Tokens, there are risks associated with Quantstamp and its business and operations and the

Tokens;

(j) you agree and acknowledge that Quantstamp is not liable for any indirect, special, incidental,

consequential or other losses of any kind, in tort, contract or otherwise (including but not

limited to loss of revenue, income or profits, and loss of use or data), arising out of or in

connection with any acceptance of or reliance on this Whitepaper or any part thereof by you;

and

(k) all of the above representations and warranties are true, complete, accurate and non-

misleading from the time of your access to and/or acceptance of possession of this Whitepaper

or such part thereof.

CAUTIONARY NOTE ON FORWARD-LOOKING STATEMENTS

All statements contained in this Whitepaper, statements made in press releases or in any place

accessible by the public and oral statements that may be made by Quantstamp’s respective

46

directors, executive officers, employees or other representatives acting on behalf of Quantstamp

that are not statements of historical fact, constitute “forward- looking statements”. Some of

these statements can be identified by forward-looking terms such as “aim”, “target”,

“anticipate”, “believe”, “could”, “estimate”, “expect”, “if”, “intend”, “may”, “plan”, “possible”,

“probable”, “project”, “should”, “would”, “will” or other similar terms. However, these terms are

not the exclusive means of identifying forward-looking statements. All statements regarding

Quantstamp’s financial position, business strategies, plans and prospects and the future

prospects of the industry which Quantstamp is in are forward-looking statements. These

forward-looking statements, including but not limited to statements as to Quantstamp’s revenue

and profitability, prospects, future plans, other expected industry trends and other matters

discussed in this Whitepaper regarding Quantstamp are matters that are not historical facts, but

only predictions.

These forward-looking statements involve known and unknown risks, uncertainties and other

factors that may cause the actual future results, performance or achievements of Quantstamp to

be materially different from any future results, performance or achievements expected,

expressed or implied by such forward-looking statements. These factors include, amongst

others:

(a) changes in political, social, economic and stock or cryptocurrency market conditions, and the

regulatory environment in the countries in which Quantstamp conducts its respective businesses

and operations;

(b) the risk that Quantstamp may be unable to execute or implement its business strategies and

future plans;

(c) changes in interest rates and exchange rates of fiat currencies and cryptocurrencies;

(d) changes in the anticipated growth strategies and expected internal growth of Quantstamp;

(e) changes in the availability and fees payable to Quantstamp in connection

with its respective businesses and operations;

(f) changes in the availability and salaries of employees who are required by Quantstamp to

operate their respective businesses and operations;

(g) changes in competitive conditions under which Quantstamp operates, and

the ability of Quantstamp to compete under such conditions;

(h) changes in the future capital needs of Quantstamp and the availability of

47

financing and capital to fund such needs;

(i) war or acts of international or domestic terrorism;

(j) occurrences of catastrophic events, natural disasters and acts of God that affect the

business and/or operations of Quantstamp;

(k) other factors beyond the control of Quantstamp; and

(l) any risk or uncertainties associated with Quantstamp and its businesses and operations and

the QSP Tokens.

All forward-looking statements made by or attributable to Quantstamp or persons acting on

behalf of Quantstamp are expressly qualified in their entirety by the factors listed above. Given

the risks and uncertainties that may cause the actual future results, performance or

achievements of Quantstamp to be materially different from that expected, expressed or implied

by the forward-looking statements in this Whitepaper, undue reliance must not be placed on

these statements. These forward-looking statements are applicable only as of the date of this

Whitepaper.

Neither Quantstamp, nor any other person represents, warrants and/or undertakes that the

actual future results, performance or achievements of Quantstamp will be as discussed in those

forward-looking statements. The actual results, performance or achievements of Quantstamp

may differ materially from those anticipated in these forward- looking statements.

Nothing contained in this Whitepaper is or may be relied upon as a promise, representation or

undertaking as to the future performance or policies of Quantstamp.

Further, Quantstamp disclaims any responsibility to update any of those forward-looking

statements or publicly announce any revisions to those forward-looking statements to reflect

future developments, events or circumstances, even if new information becomes available or

other events occur in the future.

MARKET AND INDUSTRY INFORMATION AND NO CONSENT OF OTHER

PERSONS

48

This Whitepaper includes market and industry information and forecasts that have been

obtained from internal surveys, reports and studies, where appropriate, as well as market

research, publicly available information and industry publications. Such surveys, reports,

studies, market research, publicly available information and publications generally state that the

information that they contain has been obtained from sources believed to be reliable, but there

can be no assurance as to the accuracy or completeness of such included information.

Save for Quantstamp and its directors, executive officers and employees, no person has provided

his or her consent to the inclusion of his or her name and/or other information attributed or

perceived to be attributed to such person in connection therewith in this Whitepaper and no

representation, warranty or undertaking is or purported to be provided as to the accuracy or

completeness of such information by such person and such persons shall not be obliged to

provide any updates on the same.

While Quantstamp has taken reasonable actions to ensure that the information is extracted

accurately and in its proper context, Quantstamp has not conducted any independent review of

the information extracted from third party sources, verified the accuracy or completeness of

such information or ascertained the underlying economic assumptions relied upon therein.

Consequently, neither Quantstamp nor its respective directors, executive officers and employees

acting on their behalf make any representation or warranty as to the accuracy or completeness

of such information and shall not be obliged to provide any updates on the same.

TERMS USED

To facilitate a better understanding of the QSP Tokens being offered for purchase Quantstamp,

and the business and operations of Quantstamp, certain technical terms and abbreviations, as

well as, in certain instances, their descriptions, have been used in this Whitepaper. These

descriptions and assigned meanings should not be treated as being definitive of their meanings

and may not correspond to standard industry meanings or usage.

Words importing the singular shall, where applicable, include the plural and vice versa and

words importing the masculine gender shall, where applicable, include the feminine and neuter

genders and vice versa. References to persons shall include corporations.

49

NO ADVICE

No information in this Whitepaper should be considered to be business, legal, financial or tax

advice regarding Quantstamp, the QSP Tokens and the Quantstamp Token Sale. You should

consult your own legal, financial, tax or other professional adviser regarding Quantstamp and its

business and operations and the QSP Tokens. You should be aware that you are bearing the

financial risk of any purchase of QSP Tokens for an indefinite period of time.

NO FURTHER INFORMATION OR UPDATE

No person has been or is authorised to give any information or representation not contained in

this Whitepaper in connection with Quantstamp and their respective businesses and operations,

the QSP Tokens and, if given, such information or representation must not be relied upon as

having been authorised by or on behalf of Quantstamp. The Quantstamp Token Sale shall not,

under any circumstances, constitute a continuing representation or create any suggestion or

implication that there has been no change, or development reasonably likely to involve a

material change in the affairs, conditions and prospects of Quantstamp or in any statement of

fact or information contained in this Whitepaper since the date hereof.

RESTRICTIONS ON DISTRIBUTION AND DISSEMINATION

The distribution or dissemination of this Whitepaper or any part thereof may be prohibited or

restricted by the laws, regulatory requirements and rules of any jurisdiction. In the case where

any restriction applies, you are to inform yourself about, and to observe, any restrictions which

are applicable to your possession of this Whitepaper or such part thereof at your own expense

and without liability to Quantstamp.

Persons to whom a copy of this Whitepaper has been distributed or disseminated, provided

access to or who otherwise have the Whitepaper in their possession shall not circulate it to any

other persons, reproduce or otherwise distribute this Whitepaper or any information contained

herein for any purpose whatsoever nor permit or cause the same to occur.

RISKS AND UNCERTAINTIES

50

Prospective purchasers of QSP Tokens should carefully consider and evaluate all risks and

uncertainties associated with Quantstamp, the QSP Tokens, the Quantstamp Token Sale, all

information set out in this Whitepaper and the Terms prior to any purchase of QSP Tokens. If

any of such risks and uncertainties develops into actual events, the business, financial condition,

results of operations and prospects of Quantstamp could be materially and adversely affected. In

such cases, you may lose all or part of the value of the QSP Tokens.

IF YOU ARE IN ANY DOUBT AS TO THE ACTION YOU SHOULD TAKE, YOU

SHOULD CONSULT YOUR LEGAL, FINANCIAL, TAX OR OTHER PROFESSIONAL

ADVISOR(S).

51

